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Abstract 
Using the bond-valence model, a relationship is 
developed between the thermal expansion of a chemical 
bond, its amplitude of thermal vibration and its force 
constant. An empirical expression found between 
bond valence and the force constants derived from 
vibrational spectroscopy allows all of these quantities to 
be predicted from either the expected or the observed 
bond valence. The thermal expansion predicted by these 
relations is in excellent agreement with the average 
expansion observed around cations in inorganic solids, 
but individual bonds are found to expand more or 
less than this depending on strains and constraints 
within the structure. Comparison between the theoretical 
and observed amplitudes of thermal vibration gives a 
quantitative measure of correlation between the thermal 
motions of atoms that form the bond. The theory also 
shows how the parameters used in calculating bond 
valences from bond lengths should be corrected for 
temperature. 

1. Introduction 
The expansion that occurs when a crystal is heated is the 
net result of two effects: the expansion of bonds caused 
by the anharmonic potential between bonded atoms and 
the contraction (or expansion) in the distance between 
second nearest neighbours caused by the increased bend- 
ing of the bond angles. Both effects are related to 
the increase in amplitude of the thermal motions of 
the atoms: vibrations along the direction of the bond 
causing bond expansion and vibrations perpendicular to 
the bonds causing bond bending. 

In her classic study of thermal expansion Megaw 
(1939) analysed the problem of the thermal expansion 
of bonds in terms of Born potentials and proposed the 
empirical relation (1) between the coefficient of thermal 
expansion, a, and the valence, s, of a bond 

c~ cx s -2. (1) 

Later, Hazen & Prewitt (1977) proposed a different 
empirical relation (2) 

= 32.9(0.75 - s) × 10 -6 K -I.  (2) 

Cameron, Sueno, Prewitt & Papike (1973) meanwhile 
demonstrated a negative linear correlation between the 
coefficient of thermal expansion and the force constant 
of a bond. In this paper we use the bond-valence model 
to derive theoretical relations between the force constant 
and thermal expansion of a bond, and the change in the 
amplitude of its thermal vibrations with temperature. 
These are each related to the bond valence through 
an empirical relation with the force constant. Although 
the theoretical relations derived here differ significantly 
from the empirical relationships previously proposed, 
they are found to agree well with observation. 

According to the bond-valence model described by 
Brown (1992), every bond in a non-metallic inorganic 
crystal has a valence which obeys two rules: the sum 
of the bond valences around each atom is equal to the 
valence of the atom (valence-sum rule) and, subject 
to the valence-sum rule, the valence is distributed as 
equally as possible between the bonds (the equal-valence 
rule). These two rules, known as the network equations 
when expressed in mathematical form, can be used to 
predict the bond valences for any compound whose 
bond connectivity is known, a feature that we use in 
the analysis of individual structures below. 

The usefulness of the bond-valence model lies in the 
empirical correlation found between bond valence, s, and 
bond length, R, given by 

s = exp((R0 - R)/B) ,  (3) 

where R0 and B are experimentally determined constants 
that depend only on the nature of the atoms that form 
the bond. Extensive tables of these constants determined 
at room temperature have been published by Brown 
& Altermatt (1985) and Brese & O'Keeffe (1991). 
Equation (3), which is plotted in Fig. 1, represents the 
repulsion between the atoms: the stronger a bond is 
made, the more difficult it is to shorten. It is therefore the 
bond-valence model's represention of the anharmonic 
part of the interatomic potential. Consequently, it should 
be possible to derive an expression for the thermal 
expansion of a bond starting with (3). 

The application of the bond-valence model to thermal 
expansion makes use of the distortion theorem (Brown, 
1992) which states that: 
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'If the bonds in the environment of an atom are 
changed in such a way as to lengthen some bonds 
and shorten others while keeping the sum of the 
bond valences constant, the average bond length will 
increase'. 

The validity of this theorem can be seen from an 
examination of the graph of (3) shown in Fig. 1, where 
it is seen that the bond which is lengthened increases 
by much more than the decrease in the length of the 
bond that is shortened. Thus, the average bond length 
is increased providing the average bond valence is held 
constant, as required by the valence-sum rule. 

This paper examines the hypothesis that the distortion 
theorem can be used to predict the thermal expansion of 
a bond in the following way. Suppose an atom is at 
the centre of a regular coordination sphere, i.e. all its 
bonds are the same length. As the temperature is raised, 
the atom will vibrate around its equilibrium position 
with an increasingly large amplitude. At any instant 
it will no longer be at the centre of its coordination 
sphere, but will be displaced a distance, tSR, from the 
centre. Thus, it will have some bonds that are longer and 
some shorter than the average, leading to the distortion 
theorem prediction that the average bond length will 
be increased. As the temperature is further increased, 
the amplitude of vibration will also increase and with 
it the average bond length. If one can predict how the 
amplitude of vibration changes with temperature, one 
can calculate the thermal expansion of the bond. This 
paper explores this hypothesis, using it in §2 to derive 
an expression for the thermal expansion of a bond and, 
in §3 and §4, to compare the values obtained from 
this expression with observations made on a number of 
crystals. 

ri 
Bond length 

Fig. 1. Relationship between bond valence and bond length illustrating 
the distortion theorem. The long dashed lines indicate the valence 
and length in an undistorted coordination sphere; the short dashed 
lines are as in (a), but after distortion which keeps the average 
bond valence constant. 

The increase in amplitude of vibration with tempera- 
ture is primarily a harmonic effect - the anharmonic part 
of the interatomic potential produces only a second-order 
correction that can be neglected in the first approxima- 
tion. However, the thermal expansion is an anharmonic 
effect. Equation (3) is used to calculate the instantaneous 
bond length at a given temperature. When the observed 
bond length is calculated by time-averaging over the 
instantaneous bond lengths, the first-order term in the 
Taylor expansion of the displacement vanishes, leaving 
only the second order or anharmonic term representing 
the thermal expansion. In the analysis below, therefore, 
it is satisfactory to calculate the amplitude of vibration 
of a bond in the harmonic approximation using the bond 
force constant, but the change in the average bond length 
requires the use of the anharmonic effects represented 
by (3). 

2. Theory 

2.1. The relationship between dR/dT and dU/dT 
Assume that a cation is coordinated by N bonds of 

length Ri (i = l-N). First consider the change in length 
of one of these bonds. For simplicity we can then drop 
the index i. Assume also for the present that changing the 
temperature of the crystal does not alter the distribution 
of valence between the bonds so that the valence, s, of 
the bond under consideration remains constant as the 
temperature is raised. In this case (3) for the given bond 
can be written as 

s = exp((R0 - Re)/B), (4) 

where Re is the equilibrium length of the bond, i.e. the 
length of the bond when the atoms have no thermal 
motion and are stationary at their minimum energy 
positions. 

At any given temperature the atoms are moving such 
that the instantaneous length of the bond, W, is given by 

R '=  < R >  +~R, 

where < R > is the time-averaged length of the bond (in 
general different from Re since the bond may expand on 
heating) and 6R will fluctuate with time, but will have 
an average value of zero. 

From (3) s', the instantaneous value of the bond 
valence, is then given by 

s '=  exp((Ro - R')/B) 

= exp((Ro - ( < R > + ~R))/B) 

= exp((Ro- < R > )/B).exp( - 6R/B). 

Expanding the last term as a power series and ignoring 
the terms in high powers of the small quantity 6R gives 

s' = exp((Ro- < R > )/B)[1 - 6R/B + ~R2/2B 2 +...]. 
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Averaging this equation over time and recognizing that 
< s ~ >, the time average of s ~, is just s, since s is 
assumed to be independent of temperature, yields 

s = exp((R0- < R > )/B)[1 + < 6R 2 > /2B 2] 

since the average of the term in the first power of 6R 
is zero. 

Substituting the expression in (4) for s and combining 
the two exponents gives 

exp(( < R > -Re)/B)= 1 + < ~R 2 > /2B 2. 

Since AR (= < R > - Re) is the expansion in the bond 
resulting from thermal motion 

the bond direction. 6R, hence U, is therefore identically 
zero, regardless of the degree of thermal motion, and (5) 
predicts that the bond will show no thermal expansion. 
Hirschfeld (1976) has shown that such rigid bonds have 
atomic displacement parameters with identical compo- 
nents along the vector that joins them. Rigid bonds are 
typically found in strongly bonded complexes such as 

2- p o  3- and SiO 4-. SO 4 , 
Uncorrelated motion is most likely to be found when 

the bonds are weak, for example, when the cation is a 
large alkali metal. In this case the mean square deviation 
of the bond length is given by the sum of the components 
of the atomic displacement parameters, U, of the two 
atoms along the bond direction (Busing & Levy, 1964), 
so that 

exp(AR/B) = 1 + < 6R 2 > / 2 B  2, < 6R 2 > = (Ucation + Uanion).r = U(+) ,  

which, by expanding the left-hand side as a power series 
in the small quantity AR and dropping the higher order 
terms, gives 

I + AR/B= I + < 6R 2 > /2B 2 

where r is a unit vector in the direction of the bond. 
Therefore, from (5) the thermal expansion of weak bonds 
is predicted to be 

AR = 1.35U(+)/~ (7) 

or  

AR = < 6R 2 > /2B .  

Since for most bonds B can be taken as 0.37/~ (Brown 
& Altermatt, 1985), it follows that the increase in the 
bond length, relative to its length when the atoms are 
at rest, is related to the mean square deviation, U = 
< 6R 2 >, in the length of the bond by 

AR = 1.35U A. (5) 

Thus, the expansion of the bond is directly proportional 
to the mean square deviation of the bond from its mean 
length. In particular, recognizing that R changes in the 
same way as AR, and differentiating both sides with 
respect to temperature T, gives 

dR/dT= dARIdT= 1.35(dU/dT). (6) 

2.2. Determination of dU/dT 

The value of U depends on the thermal motions of 
both the central atom and its ligand. It can be determined 
only if we know the amplitudes of motion of both atoms 
along the direction of the bond and how their relative 
motions correlate. The amplitude can be measured by 
X-ray diffraction, but the correlation is not so readily 
determined. However, we can identify two limiting 
cases, the first when the two atoms are connected by 
a rigid bond and therefore always move in-phase and 
the second when their motions are uncorrelated. 

In the rigid-bond limit the atom and its ligand are 
rigidly connected and so have identical motions along 

and (6) can be written as 

dR/dT=c.dU(+)/dT, 

where for rigid bonds c = 0 and for bonds whose terminal 
atoms have uncorrelated motions c = 1.35. For all other 
bonds c will lie between these extremes. This result is 
in g o o d  a g r e e m e n t  w i t h  the  v a l u e  o f  c o f  ,-~0.7 d e r i v e d  

from Fig. 16 of Cameron et al. (1973), which shows the 
correlation between the average coefficient of thermal 
expansion of a bond and the average thermal increase 
in the isotropic displacement parameters for different 
cations. 

The problem of the unknown correlation between the 
motions of the terminal atoms can be avoided if it is 
possible to make a direct determination of dU/dT. Even 
though U cannot be measured experimentally, it can 
be calculated by noting that in the classical harmonic 
approximation, which should be adequate for calculating 
U above room temperature, the energy in the bond is 
GA2/2, where G is the force constant of the bond and A 
is its amplitude of vibration. Boltzmann's equation then 
gives 

U= [f A2exp( -  GAZ/2kT)dA]/[ f e x p ( -  GA 2/2kT)dA] 

=kT/G, (8) 

where the integration is taken over all values of A. The 
derivative has the simple form 

dU/dT=k/G.  (9) 
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Force constants can be determined from the analysis 
of vibrational spectra, but such analyses have not been 
performed for most of the crystal used in this study, so it 
is necessary to look for a relation that will permit force 
constants to be predicted from structural information. 
A selection of force constants taken from the literature 
is plotted in Fig. 2 as a function of the bond valence 
s. The scatter among these values can be attributed to 
the weakness of the assumptions implicit in the use of 
the Urey-Bradley force field, as well as to experimental 
error and the neglect of determinative factors other than 
bond valence, but in spite of the scatter, a clear trend is 
observed and a reasonable description is given by (10), 
which is designed to give a quadratic fit at s = 0 and a 
linear fit for s > 1 v.u. 

G=as - b(1 - exp( - as/b)). (10) 

As discussed in §4.1, the validity of (9) can be tested 
by comparing the values of dU/dT calculated using (9) 
and (10) with the values of dU(+)/dT obtained from 
diffraction studies (Fig. 3) since 

O<_dU/dT=k/G<dU(+)/dT. ( l l )  

A factor f,  which measures the degree of correlation 
between the motions of the terminal atoms, is given by 

f= 1 - (dU/dT)/(dU(+)/dT). (12) 

A direct prediction of the thermal expansion of a 
bond in terms of its force constant, G, is obtained by 
combining (6) and (9) 

The constants a and b, which correspond to the solid 
line in Fig. 2, are 450 N m -1 (v.u.) q and 140 N m -I , 
respectively. However, bonds to atoms that lie low in 
the periodic table tend to lie below this line, while those 
high in the table tend to lie above, introducing a small 
systematic error in the estimate of G given by (10). To 
make explicit the extent of the uncertainty introduced by 
this error, two limiting broken lines are also shown, the 
upper having a = 505 N m -l (v.u.) -1 and b = 100 N m -l , 
and the lower having a = 405 N m -l (v.u.) -l and b = 
200 N m -1 . 
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Fig. 2. Correlation between force constant and bond valence from 
spectroscopic measurements. The lines represent equation (10). 
Force constants taken from Amos & Flewett (1974): Ti(NO3)4; 
Armbruster ( 1976): YXO4; Deverajan & Shurvell (1977): Li2 SiO3; 
Galanov & Brodskii (1969): KCIO4; Husson, Repelin, Dao & 
Brusset (1977): CaNb206; Jones, Swanson & Kubas (1974): 
Cs2LiFe(CN)6; Mtiller & Krebs (1967): XO4 species; Plihal & 
Schaak (1970): CaCO3; Willett, LaBonville & Ferraro (1975): 
XeO2F2. The points are labelled by the cation, the anions are 
first-row elements, mostly oxygen. 

dR/dT= 1.35k/G. (13) 

Using (10) to calculate G it is possible to use (13) to 
calculate dR/dT as a function of bond valence. The result 
is shown by the solid lines in Figs. 4 and 5. The broken 
lines show the values of dR/dT that correspond to the 
broken lines of Fig. 2. 

It should be pointed out that (10) and (13), which are 
used to give dR/dT as a function of bond valence, are 
dependent only on three fitted parameters: B in (3) is 
obtained by fitting bond lengths to bond valences and is 
known to have a value close to 0.37 A for most if not all 
bonds (Brown & Altermatt, 1985), and a and b in (10) 
are obtained by fitting force constants to bond valences 
as shown in Fig. 2. None of the parameters have been 
chosen to fit the temperature dependence of any bond 
property. The extent to which the theory describes the 
observations is the extent to which the underlying model 
can be considered valid. 
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Fig. 3. dU/dT versus bond valence. The circles refer to the observed 
values of dU(+)/dT given in Table 1. The solid line represents 
equation (9), the broken lines represent the limits shown in Fig. 2. 
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2.3. The variation of Ro with temperature 

A by-product of this analysis is the determination of 
how the bond-valence parameter R0 of (3) varies with 
temperature. The tabulated values (Brown & Altermatt, 
1985; Brese & O'Keeffe, 1991) have generally been 
determined at room temperature and are clearly inap- 
propriate for use when analysing structures determined 
at other temperatures. The bond-valence parameters can, 
however, be simply corrected for temperature by noting 
that at higher temperature, when the bond has expanded 
by AR, (3) can be written as 

s= exp(((R0 + AR) - (R + AR))/B). 

! ll I o 
, - . .  100 I ~I0o 

*< O0 D.O 
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50 ~o\k9 

o OO~_O,. w ~ t - ~ r ' , . ~  _ _ _ 

, , , , ~ ~ ,-,~,~:~-~ 
~ V  ~ 

O 0.5 O 1.0 1.5 O 
O 
O 

O 
Bond valence (v.u.) 

Fig. 4. d R / d T  versus bond valence for individual bonds. The circles 
refer to the observed values given in Table 1. The solid line shows 
the predictions obtained from (13) and the broken lines represent 
the limits shown in Fig. 2. 
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Fig. 5. <dR/dT> averaged around each cation versus bond valence. 
The circles refer to the averages of the observed values given in 
Table 1. The filled circles refer to the garnets (f and g). The lines 
are the same as those shown in Fig. 4. 

Thus, R~', the value of R0 to be used at temperature T 
above room temperature, is given by 

RS = Ro + ZIR = Ro + (dR/dT)ZIT. (14) 

Reasonable values of dR/dT as a function of s can be 
found from the solid line shown in Fig. 5. 

2.4. The influence of strains and constraints 

The above analysis assumes that changes in temper- 
ature do not change the distribution of valence between 
the bonds. However, this ideal is not always achieved 
in practice, particularly in strained or constrained 
structures. The requirements of translational symmetry 
impose constraints that sometimes make it impossible for 
the bonds to adopt the chemically ideal lengths predicted 
by the network equations described in § 1. Consequently, 
bonds in inorganic solids are sometimes strained, as 
identified by differences between the predicted and 
observed bond valences (see Table 1 for examples). 
Bonds in which the observed valences are lower than 
predicted are stretched, whilst those in which the 
observed valences are higher are compressed. 

Such strains may influence the degree to which a 
given bond is able to expand with temperature. For 
example, one might expect the thermal expansion of 
a stretched bond to be larger than that of a bond that 
is compressed, leading to a redistribution of the bond 
valence. Thermal expansion will thus exaggerate any 
strains in the environment of an atom. 

Another source of valence redistribution is found in 
structures that are constrained by having two or more 
different chains of bonds running in parallel through the 
crystal. Both chains must expand at the same rate which 
will be determined by the expansion of the more strongly 
bonded chain. The weaker bonds are thus constrained to 
expand at a lower rate than theory would predict and, 
to conserve the valence sum at each atom, valence is 
transferred from the bonds perpendicular to the chain to 
those parallel to the chain as the temperature is increased. 
Thus, the bonds perpendicular to the chains will expand 
more than expected. 

3. Experimental 

In order to test the predictions of the model, the 
Inorganic Crystal Structure Database (ICSD; Bergerhoff, 
Sievers, Hundt & Brown, 1983) was searched for 
compounds whose structures have been determined 
at various temperatures between room temperature 
and 1000K, without displaying any phase or ordering 
transitions. The compounds retrieved were chosen to 
have relatively simple structures with no hydrogen 
bonds, to be well determined and to have been refined 
with anisotropic atomic displacement parameters. A 
total of 12 compounds, listed in Table 1, were chosen 
for analysis. 
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Table  1. Theoretical and observed bond valences, thermal expansion dR/dT, dU(+)/dT and f for  bonds in various 
structures 

Uncertainties obtained from regressions are given at the 90% confidence limit. The header for each compound gives the formula, name, ICSD 
collection number, space group, temperature range studied and the number of determinations used. 

Bond valence dR/dT dU/dT dU( + ) / d T  Correlation 
(x 10 -6 tk K -l) (× 10 -6 ~t 2 K -1) factor 

Bond Theor. Obs. Theor. Obs. Theor. Obs f 

(a) CuAIO 2 Delafossite (ICSD 32630-5) R3m 295-1200K 6 
Cu--O x2 0.50 0.49 16 9 (3) 12 21 (2) 0.43 
AI--O x6 0.50 0.46 16 20 (2) 12 22 (3) 0.45 

(b) BaCIF (ICSD 201514-9) P4/nmm 297-883 K 6 
Ba--F ×4 0.25 0.29 53 64 (4) 37 103 (10) 0.64 
Ba--CI1 0.20 0.22 78 99 (6) 53 108 (5) 0.51 
Ba--CI2 x4 0.20 0.18 78 103 (7) 53 106 (10) 0.50 

(c) LilO 3 (ICSD 46025-27, 35474-6) P63 299--460 K 3 
Li--O ×3 0.17 0.19 103 44 (7) 78 116 (11) 0.33 
Li--O' ×3 0.17 0.16 103 95 (49) 78 105 (7) 0.26 
I - -O ×3 1.67 1.72 3 - 8  (52) 2 75 (11) 0.97 

(d) Ni2SiO 4 (ICSD 100642-5) Pbnm 298-1173 K 4 
Nil--O1 x2 0.33 0.34 32 30 (10) 23 32 (3) 0.28 
Nil - -O2 ×2 0.33 0.33 32 31 (19) 23 33 (9) 0.30 
N i l - - 0 3  ×2 0.33 0.29 32 35 (11) 23 33 (12) 0.30 
Ni2--O1 0.33 0.28 32 37 (23) 23 34 (15) 0.32 
Ni2--O2 0.33 0.36 32 14 (10) 23 32 (17) 0.28 
Ni2--O3 ×2 0.33 0.24 32 36 (12) 23 38 (10) 0.39 
Ni2--O3' ×2 0.33 0.34 32 21 (9) 23 37 (15) 0.38 
Si--O1 1.00 1.06 6 6 (8) 4 13 (8) 0.69 
Si--O2 1.00 0.92 6 - 0  (13) 4 21 (8) 0.81 
Si--O3 ×2 1.00 1.03 6 -1  (10) 4 24 (8) 0.83 

(e) Fe2SiO 4 (ICSD 10116-8) Pbnm 573-1173 K 4 
Fel--O1 ×2 0.33 0.34 32 29 (5) 23 49 (7) 0.53 
F e l - - 0 2  ×2 0.33 0.34 32 18 (7) 23 49 (5) 0.53 
Fel - -O3 x2 0.33 0.27 32 27 (9) 23 51 (4) 0.55 
Fe2--O1 0.33 0.26 32 24 (2) 23 51 (2) 0.55 
Fe2--O2 0.33 0.37 32 14 (6) 23 39 (6) 0.41 
Fe2--O3 x2 0.33 0.21 32 20 (8) 23 56 (4) 0.57 
Fe2--O3' x2 0.33 0.38 32 54 (16) 23 56 (11) 0.57 
Si--O1 1.00 1.03 6 12 (14) 4 28 (10) 0.86 
Si--O2 1.00 0.95 6 12 (12) 4 38 (4) 0.89 
Si--O3 ×2 1.00 1.10 6 -27 (13) 4 49 (12) 0.92 

( f )  Mg3AI2(SiO4) 3 Pyrope (ICSD 24940-3) Ia3d 298-1023 K 4 
Mg--O ×4 0.25 0.26 53 16 (11) 37 32 (21) -0.16 
Mg--O'  ×4 0.25 0.17 53 44 (3) 37 61 (5) 0.39 
AI--O ×6 0.50 0.49 16 14 (3) 12 25 (8) 0.52 
Si--O ×4 1.00 1.01 6 1 (5) 4 20 (12) 0.80 

(g) Ca3AI2(SiO4) 3 Grossular (ICSD 24944-6) Ia3d 298-948 K 3 
Ca--O ×4 0.25 0.39 53 22 (11) 37 20 (16) -0.85 
Ca--O' x4 0.25 0.24 53 18 (4) 37 39 (6) 0.05 
AI--O ×6 0.50 0.44 16 25 (1) 12 22 (4) 0.45 
Si--O ×4 1.00 0.98 6 12 (7) 4 26 (8) 0.85 

(h) BaSO 4 (ICSD 33730-4) Pnma 298-1158K 5 
Ba--O1 0.40 0.28 23 110 (20) 17 89 (23) 0.81 
Ba--O2 0.40 0.26 23 78 (9) 17 94 (27) 0.82 
Ba--O3 ×2 0.20 0.25 78 106 (20) 53 91 (12) 0.42 
Ba--O3' ×2 0.20 0.19 78 60 (28) 53 94 (12) 0.44 
Ba--O3" ×2 0.20 0.25 78 60 (30) 53 106 (16) 0.50 
S--O1 1.60 1.54 3 -22 (33) 2 85 (33) 0.98 
S--O2 1.60 1.53 3 -14 (24) 2 70 (28) 0.97 
S--O3 ×2 1.40 1.46 3 16 (24) 3 61 (26) 0.95 

(i) MgGeO 3 Pyroxene (ICSD 201660-201663) C2/c 293-893 K 4 
Mgl--O1 ×2 0.30 0.36 40 10 (16) 28 46 (6) 0.39 
Mgl - -Ol '  ×2 0.30 0.30 40 49 (8) 28 52 (20) 0.46 
M g l - - 0 2  x2 0.40 0.39 23 34 (5) 17 55 (20) 0.69 
Mg2--O1 ×2 0.35 0.23 23 51 (16) 22 51 (17) 0.57 
Mg2--O2 ×2 0.45 0.41 19 - 6  (9) 14 44 (17) 0.68 
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Bond valence 

Bond Theor. Obs. 

Mg2--O3 x2 0.20 0.24 
Ge--O1 1.05 1.03 
Ge--O2 1.15 1.12 
Ge--O3 0.90 0.88 
Ge--O3 0.90 0.86 

(j) KLiSO 4 (ICSD 36470-36472) 
Li--O1 0.23 0.30 
Li--O2 ×3 0.26 0.29 
K--O1 x3 0.10 0.10 
K--O2 x3 0.12 0.15 
K--O2' x3 0.12 0.10 
S--O1 1.48 1.54 
S--O2 x3 1.51 1.57 

(k) AIzSiO 5 Andalusite (ICSD 100395-7) 
All--O1 x2 0.47 0.48 
All--O3 x2 0.61 0.57 
All--O4 x2 0.42 0.28 
A12--O2 0.53 0.55 
A12--O2' 0.53 0.47 
A12--O3 0.78 0.59 
A12--O4 x2 0.58 0.59 
Si--O1 1.06 0.98 
Si--O2 0.94 1.06 
Si--O4 x2 1.00 1.03 

(/) AI2SiO 5 Sillimanite (ICSD 100450-4) 
AI1--O1 x2 0.50 0.45 
AI1--O2 x2 0.59 0.57 
AI1--O4 x2 0.42 0.40 
A12--O2 0.83 0.70 
A12--O3 0.86 0.78 
A12--O4 x2 0.66 0.62 
Si--O1 1.01 1.00 
Si--O3 1.14 1.20 
Si--O4 x2 0.93 0.99 

Table 1 (cont . )  

dR/dT 
(xl0-6ikK -1) 

Theor. Obs. 

78 68 (31) 
6 0 (8) 
5 4 (6) 
7 18 (4) 
7 -1 (26) 

P63 
62 224 (349) 
51 44 (84) 

306 125 (21) 
204 91 (4) 
204 240 (82) 

3 -238 (20) 
3 -63 (18) 

Pnnm 
17 2 (1) 
12 4(1) 
22 69 (2) 
14 14 (3) 
14 23 (6) 
9 9 (2) 

13 4 (1) 
5 3 (3) 
6 1 (3) 
6 -1 (2) 

Pbnm 
16 9 (3) 
12 4(1) 
22 25 (4) 

8 10 (2) 
7 -9  (2) 

11 6 (2) 
6 6 (4) 
5 -2  (3) 
7 5 (4) 

42 
30 

---210 
--~ 150 
--- 150 

3 
3 

d U/dT d U(+ )/dT Correlation 
(× 10-6 ,~2 K-i) factor 

Theor. Obs f 

53 54 (18) 0.02 
4 24 (8) 0.83 
4 33 (9) 0.88 
5 38 (11) 0.87 
5 54 (27) 0.91 

293-568 K 3 
85 (14) 0.51 
98 (6) 0.69 

214 (1) "--0 
135 (2) "--0 
198 (22) "--0 
54 (6) 0.94 
52 (7) 0.94 

300-1273 K 5 
13 19 (1) 0.32 
8 19 (1) 0.58 

16 48 (2) 0.67 
11 21 (2) 0.48 
11 20 (1) 0.45 
6 20 (1) 0.70 

10 20 (1) 0.50 
4 21 (1) 0.81 
5 17 (2) 0.71 
4 18 (1) 0.78 

300-1273 K 5 
12 20 (2) 0.40 
10 24 (5) 0.58 
16 23 (1) 0.30 
5 20 (2) 0.75 
5 22 (2) 0.77 
7 19 (1) 0.63 
4 18 (1) 0.78 
4 22 (2) 0.82 
5 17 (1) 0.71 

A number  of errors were found in the database, many 
of  them traceable to errors or ambiguities in the original 
literature. The atomic displacement parameters were 
checked particularly carefully. Errors in the positional 
coordinates, which can be readily detected when bond 
lengths are calculated, are by no means unknown in 
the literature; how much more should we expect to find 
errors in the displacement parameters, which cannot be 
so easily checked? Displacement parameters are also 
strongly affected by systematic errors such as absorption, 
but since these effects tend to be the same for all 
measurements  made on the same crystal, this should not 
affect the variation of atomic displacement parameters 
with temperature. A second source of error lies in 
the confusion which arises from the way displacement 
parameters are reported, since there are several different 
conventions in use. They can be reported in the form of 
B,/3 or U, each with a different definition. Further, there 
are two different definitions of /3  depending on whether 
the factor of 2 in the cross terms is included explicit ly 
or is incorporated in the value of /3  itself and authors do 
not always state which convention they have adopted. 

Fortunately, in the cases studied the results were not 
significantly affected by this ambiguity.  A third type of 
error can occur if the crystallographic setting is trans- 
formed between refinement and publication, since the 
transformation can easily be applied incorrectly to the 
displacement parameters. This danger is augmented if 
the author does not give explicit ly the atomic positional 
coordinates fixed by symmetry  for atoms on special 
positions. An inexcusable error, but one that is known 
to occur, arises because different refinement programs 
list the elements of the atomic U matrices in a different 
order, leading to the possibili ty of careless transcription. 
Therefore, extreme caution is needed in interpreting 
the reported displacement parameters. While  several 
correctable errors were found in the atomic displacement 
parameters reported in the ICSD, there may well be 
others that we did not catch. Some compounds were 
excluded from the study because of doubts about the 
correctness of these parameters. 

For each bond at each of the reported temperatures 
the values of R, (Ucation + Uanion).r - U(+) and (Ucation - -  

Uanion).r were calculated, the latter being used to check 
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the atomic displacement parameters. Its value should 
be close to zero, particularly for rigid bonds (Busing 
& Levy, 1964). Large and variable values indicate 
possible problems in the reported values of U. The 
results of a regression analysis of R and U(+) on T 
are reported as dR/dT and dU(+)/dT in Table 1, the 
number in parentheses in each case representing the 90% 
confidence limit generated by the regression analysis. 

4. Results 

The results of this study are summarized in Table 1. 
For each of the 80 bonds in the 12 crystals studied, 
the theoretical and observed bond valences are given, 
the theoretical values being calculated using the network 
equations mentioned in § 1 and described in more detail 
by Brown (1992). Where the bonds are strained, these 
two values are different. A stretched bond is indicated 
by an observed valence smaller than theory and a com- 
pressed bond by an observed valence greater than theory. 
Then follow the theoretical values of dR/dT calculated 
by substituting the theoretical bond valences into (10) to 
find G, which is substituted into (13) to obtain dR/dT. 
The next columns give the observed values of dR/dT, 
the theoretical value of dU/dT [from (10) and (9)] 
and the observed value of dU(+)/dT followed by the 
correlation factor f, given by (12). For each compound 
the information given in the header is a reference letter, 
the formula, the ICSD collection numbers, the space 
group, the temperature range examined and the number 
of temperatures at which structures were determined. 
Further details of individual structures are given in §4.3. 

4.1. Comparison of dU/dT with dU(+)/dT 
Fig. 3 shows the observed values of dU(+)/dT, 

indicated by circles, and dU/dT, calculated using (9) 
and (10) and indicated by the solid line, plotted against 
bond valence. The broken lines correspond to the values 
of dU/dT that would be obtained using the broken lines 
of Fig. 2. As expected, the points for dU(+)/dT lie on 
or above the line [see (11)]. The difference is largest for 
the strong bonds. These are the bonds that are expected 
to be rigid, for which the assumption of uncorrelated 
motion is not valid. 

The correlation between the motion of the two atoms 
defining a bond is given by the correlation factor f 
defined in (12) and plotted in Fig. 6. A value of zero 
represents no correlation and 1.0 a rigid bond. The solid 
line shown in this figure has the equation 

f =  1 - exp( - s/0.5). (15) 

Much of the scatter in this plot can be attributed to 
the scatter observed in Fig. 2. In particular, the error 
introduced by ignoring the size of the atoms in (10) 
results in bonds formed by atoms low in the periodic 

table appearing to have too large a correlation (e.g. b 
and h) and those formed by atoms high in the periodic 
table to have too small a correlation (e.g. k and l). The 
solid line therefore represents a better estimate of the 
correlation than the individual observations. 

The agreement between observation and the 
expectations of the theory indicate that, in spite of 
the assumptions made in deriving (10) and (9), dU/dT 
gives a reliable prediction of the increase in the 
amplitude of vibration of bonds with temperature. This 
means that these equations can be used with confidence 
in predicting the thermal expansion of the bonds. 

4.2. Comparison of the theoretical and observed values 
of aR / 

The solid line in Fig. 4 shows the theoretical values 
of dR/dT, calculated using (10) and (13), as a func- 
tion of bond valence. The circles represent the values 
observed for individual bonds. There is general agree- 
ment between theory and observation, but a significant 
number of observations lie outside the limits of uncer- 
tainty indicated by the broken lines calculated from the 
broken lines of Fig. 2. The negative expansions shown 
for some of the stronger bonds are generally smaller than 
the experimental uncertainty, but the librational motions 
of strongly bonded groups such as SO4 and IO3 are 
expected to give rise to an apparent thermal contraction 
of the bonds (Busing & Levy, 1964; Schomaker & 
Trueblood, 1968). No correction was made for this 
effect. 

Better agreement can be obtained if the values of 
dR/dT are averaged over all the bonds around a given 
cation, as shown in Fig. 5. With the exception of the 
garnets (indicated by filled circles), most of the points in 
this figure now lie between the broken lines, suggesting 
that the scatter seen in Fig. 4 results from the redistri- 
bution of valence between the bonds. Deviations from 
the predicted pattern are discussed for each structure in 
the next section. 

The solid line shown in Figs. 4 and 5 differs signifi- 
cantly from earlier proposed correlations. In the these 
studies the expansion was expressed in terms of the 
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Fig. 6. Correlation factor fin (12) versus bond valence for individual 
bonds. The line represents (15). 



758 THERMAL EXPANSION OF CHEMICAL BONDS 

coefficient of thermal expansion, a, which is related to 
dR/dT by 

a=(dR/dT)/R. (16) 

Since R is relatively constant, varying between ca 1.5 
and 2.5/~, depending on the atoms that form the bond, 
an approximate comparison can be made by assuming 
a value of 2/~. Megaw's (1939) expression (1) approx- 
imates the line shown in Fig. 5 and, with a suitable 
choice of proportionality constant, can be made to lie 
between the broken lines, but it overestimates a for 
the weak bonds and underestimates it for the strong 
bonds. Hazen & Prewitt's (1977) relation (2), on the 
other hand, corresponds to an almost straight line that 
is tangent to the solid curve of Fig. 5 at 0.45 v.u. Their 
equation agrees reasonably well with the present theory 
over the range 0.3-0.5 v.u., but greatly underestimates 
the expansion outside this range. 

4.3. Discussion of individual structures 
4.3.1. CuAl02 delafossite (a). The crystals of 

CuA102 were examined between 295 and 1200 K by 
Ishiguro, Ishizawa, Mizutani & Kato (1982), who also 
analysed the changes in structure with temperature. 

The delafossite structure contains hexagonal planes 
of edge-sharing AIO6 octahedra linked by linear 
O - - C u - - O  bridges lying along the rhombohedral 
threefold axis. The short 2.858/~ Cu--Cu and AI--A1 
spacing perpendicular to the rhombohedral axis is 
determined by the size of the edge-sharing AIO6 
octahedra and results in strong cation-cation repulsions. 
Consequently, the AIO2 layers are stretched in the basal 
plane, with the octahedra flattened perpendicular to the 
layer and the A1--O bonds stretched from 1.876 to 
1.911/~ (the observed bond valence of 0.46 v.u. can be 
compared with the expected value of 0.50 v.u.). 

Since the A1--O bonds are stretched, the observed 
value of dR/dT for the A1--O bonds is larger than 
that predicted by the theory (Table 1). Redistribution 
of valence around O results in the Cu--O bonds having 
a lower than predicted expansion. 

4.3.2. BaCIF (b). This compound was examined 
over the range 297-883K by Kodama, Tanaka, 
Utsunomiya, Hoshino, Marumo, Ishizawa & Kato 
(1984). Its tetragonal structure consists of layers 
containing two F atoms alternating with two BaCI layers, 
each Ba atom forming four bonds to an adjacent F layer, 
four bonds to C1 atoms in its own BaCI layer and one 
bond to C1 in the adjacent BaC1 layer. All four Ba--F 
distances are equal, but the interlayer and intralayer 
Ba--CI distances are crystallographically distinct. 

As Ba is a heavy atom, the force constants tend 
to be overestimated by (10), giving a theoretical value 
for dR/dT which is too low. dU/dT is correspondingly 
underestimated and the correlation coefficient f overes- 
timated, leading to points that lie above the line in Fig. 

6. Using the lower broken curve in Fig. 2, for example, 
gives improved theoretical values for dR/dT of 85 and 
123 × 10 -6ILK -I. 

4.3.3. LilO3 (c). The structure of LilO3 has been 
reported by Coquet, Crettez, Pannetier, Bouillot & 
Damien (1983) over the range 373-525 K using neutron 
diffraction and by Svensson, Albertson, Liminga, Kvick 
& Abrahams (1983) over the range 299-460 K using X- 
ray diffraction. The results of the study by Coquet et al. 
(1983) showed less consistency than those of Svensson 
et al. (1983) and were not used. 

The structure contains a pyramidal IO3 ion, which 
is a tetrahedral ion with one ligand position occupied 
by a lone electron pair. The ions are arranged so as 
to provide columns of face-sharing octahedral sites that 
are occupied by Li. Given that the uncertainty in the 
observed position of the Li atom is of the same order 
as the thermal expansion, agreement between the the- 
oretical and observed values of dR/dT and dU/dT is 
satisfactory. 

4.3.4. Fe2Si04 (d) and Ni2Si04 (e). The structure 
of Ni olivine has been determined by Lager & Meagher 
(1978) between 298 and 1174K and that of the Fe 
olivine fayalite by Smyth (1975) between 293 and 
1173 K. 

The two compounds are isostructural. All four Si- -O 
bonds are chemically equivalent, i.e. have the same 
connectivity, and therefore have a predicted valence 
of 1.00 v.u. The M--O bonds are likewise chemically 
equivalent with a predicted valence of 0.33 v.u. Devi- 
ations from these values are the result of strains. The 
environment of M1 is close to ideal in both compounds, 
but that around M2 is distorted because the M2 atom 
sits in a cavity that is too large, indicated by the 
valence sum around M2 being only 1.80 rather than 
2.00 v.u. Consequently, M2 is displaced from the centre 
of the cavity, away from the edge shared with the SiO4 
tetrahedron, giving three weak and three strong bonds. 
The resulting strengthening of the M2--O2 bond and 
weakening of the M2--O1 bond is responsible for the 
distortions observed in the SiO4 tetrahedron. 

The agreement between theory and observation is 
satisfactory for Ni2SO4. The variation in the thermal 
expansion of the bonds formed by Ni2 follows the 
expectation that the stronger bonds will expand less 
than the weaker ones. A similar pattern is seen for 
Fe2SiO4, except that dU(+)/dT is systematically larger 
and the bonds formed by 03 are anomalous. Too much 
significance should not be read into these anomalies, 
since they would disappear if 03 were shifted by three 
times the standard uncertainty in its position. 

4.3.5. Mg3Al2(Si04)3 (f) and CasAl2(Si04)3 (g). 
The structure of the aluminosilicate garnets, pyrope 
(Mg) and grossular (Ca), have been studied by Meagher 
(1975) between room temperature and 1000 K. He gives 
references to previous systematic studies as well as a 
summary of the differences in the thermal behaviour of 
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a range of A1--Si garnets, of which these two represent 
the end members, Mg being the smallest and Ca the 
largest cation that can be accommodated. The bond- 
valence sums of 1.73 v.u. around Mg in pyrope and 2.51 
around Ca in grossular indicate that the cavity containing 
the divalent cation has a limited ability to accommodate 
cations of different sizes, being too large for Mg and 
too small for Ca. 

Garnet is composed of SiOn tetrahedra sharing corners 
with A106 octahedra to form a three-dimensional net- 
work in which the divalent M cations, Mg or Ca, occupy 
eight-coordinate cavities. The cubic crystal structure has 
only four degrees of freedom, the lattice parameter and 
the three coordinates of the O atom, and these must 
be chosen to match the rigid geometry of the SiOn 
group and the expected lengths of the Si--O, A1---O and 
the two crystallographically distinct M--O bonds. The 
structure is therefore overdetermined, which accounts for 
its inability to accommodate Mg and Ca without strain. 
Garnet is a classic example of a constrained structure. 

The framework bonds Si--O and A1--O behave 
as predicted by theory, but with the compressed Ca 
atom causing a slightly larger expansion in grossular. 
However, the Mg--O and Ca--O bonds show anoma- 
lously low values of both dR/dT and dU(+)/dT (see 
the filled circles in Fig. 5). These anomalies are easily 
understood when it is realized that the size of the 
cavity is entirely determined by the framework, so 
that cavity and framework must expand at the same 
rate. The exception to the above is the weaker of the 
two M g ~ O  bonds, which has much larger values of 
dR/dT and dU(+)/dT than would be expected from the 
properties of the framework. This is a consequence of 
Mg being too small for its cavity and being free to 
move along the direction of the weak Mg--O bonds. 
The distortion theorem predicts that Mg should be dis- 
placed from the centre of the cavity, but because of the 
high symmetry, this displacement will occur randomly, 
accounting for the soft behaviour of Mg in this direction. 
A similar conclusion was reached by Pilati, Demartin & 
Gramaccioli (1996) in their lattice dynamical study of 
garnets including grossular and pyrope. They provide an 
extensive bibliography of previous work on this system. 

4.3.6. BaS04 (h). The structure of the "), phase was 
studied by Sawada & Takeuchi (1990) between 298 
and 1308 K. Structures determined above 1200 K were 
excluded from the study as they show anomalies associ- 
ated with the transformation to the o~ phase at 1363 K. 

Ba is shown as eight-coordinate, but there are two 
longer bonds that have not been included in the cal- 
culations, hence the theoretical bond valences of the 
Ba--O1 and Ba--O2 bonds are unrealistically large with 
consequent predictions of dR/dT and dU/dT that are 
much too low. Inclusion of the extra bonds just biases the 
predictions in the opposite direction. The lattice strains 
result in the observed structure lying between these 
two extremes. Because Ba is a heavy atom, the force 

constants calculated using (10) are overestimated, the 
theoretical values of dR/dT and dU/dT underestimated 
and the correlation coefficient f overestimated. 

4.3.7. MgGe03 clinopyroxene ( i ) .  Yamanaka, 
Hirano & Takeuchi (1985) determined this structure 
between room temperature and 1093K just below 
the transformation to orthopyroxene. To avoid 
problems close to the transition, the highest temperature 
determination was not used. 

The structure consists of chains of comer-sharing 
GeO3 groups which run parallel to double chains of 
edge-sharing MgO6 octahedra along the c axis. Expan- 
sion of the crystal in the chain direction is determined by 
the small expansion of the strongly bonded GeO3 chains. 
This in turn is responsible for the small expansion 
of the stronger Mgl---O1 and the Mg2---O2 bonds, 
which are the bonds most constrained by the c axis 
expansion. The expansion of the other Mg--O bonds 
compensates by being slightly larger than expected as a 
consequence of the redistribution of the valence around 
Mg. The extensive study of thermal expansion of ternary 
pyroxenes by Cameron, Sueno, Prewitt & Papike (1973) 
discusses these constraints in some detail. 

4.3.8. KLiS04 (j). Schulz, Zucker & Frech (1985) 
have determined this structure between room temper- 
ature and 568 K. It consists of a relatively flexible 
framework of corner-shared LiOn and SOn tetrahedra 
with nine-coordinated K filling the cavities within the 
framework. 

Since Li has very few electrons, its position cannot be 
accurately determined using X-ray diffraction, making 
the observed lengths of the Li--O bonds unreliable, and 
because R, dR/dT and dU/dT are extremely sensitive 
to small variations in bond valence for weak bonds, 
the theoretical calculations of these quantities for the 
K--O bonds also unreliable. The structure was included 
because it is the only one, apart from LilO3, that contains 
bonds with valences less than 0.2 v.u. The contraction 
of the S---O bonds on heating can be ascribed to the 
librational motion of the rigid SOn groups, although 
when Schulz et al. (1985) corrected the bond lengths for 
libration, a significant contraction remained for S--O1, 
an effect they attribute to anharmonic librations that 
are not included in the normal riding model correction 
(Busing & Levy, 1964). Given the uncertainties inherent 
in both the theoretical and experimental values for this 
compound, the agreement is satisfactory. 

4.3.9. Al2Si05 (k, l). This compound is known 
in three polymorphs, of which the structures of the 
andalusite (k) and sillimanite (1) phases have been 
determined between room temperature and 1273 K by 
Winter & Ghose (1979). These structures are composed 
of rutile-like chains of AllO6 octahedra and corner- 
sharing double chains composed of SiO4 and A12On 
tetrahedra, both running parallel to the c axis. 

The observed values of dU(+)/dT and dR/dT are 
close to the expected values, except around the rutile- 
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like atom All in andalusite. Its expansion along the c 
axis (involving the bonds Al l - -O1  and Al l - -O3)  is 
restricted by the smaller expansion of the more strongly 
bonded tetrahedral chain, since both chains must expand 
at the same rate. Consequently, the major expansion 
around All occurs in the A l l - - O 4  bonds that are 
arranged perpendicular to c. In andalusite this bond is 
already excessively stretched (the bond valence is much 
lower than expected) and consequently it has a large 
value of dU(+)/dT and a correspondingly large thermal 
expansion. 

5. Conclusions 

The present work provides a theoretical relation between 
thermal expansion and bond valence which is confirmed 
by observation (Fig. 5), but which differs significantly 
from the empirical relations (1) and (2) previously 
proposed by Megaw (1939) and Hazen & Prewitt (1977). 

The thermal expansion of chemical bonds is a con- 
sequence of the anharmonic nature of the interatomic 
potential which is driven to a large extent by the expo- 
nential drop-off in the repulsion between atomic cores. 
It is this repulsive potential which determines how close 
two atoms can approach and which is reflected in the 
form of (3) and hence in the distortion theorem. It is 
therefore not surprising that application of the distortion 
theorem gives an essentially correct prediction of the 
thermal expansion of bonds according to the theory 
developed in §2. 

Despite the many approximations that have been 
made in deriving the theory, the predictions of dR/dT  
are sufficiently accurate to reveal the influence of spatial 
constraints and bond strains. Fig. 4 shows that a theory 
which uses only three fitted parameters, none of which 
has been fitted to any of the thermal properties of 
the bond, gives an accurate prediction of the average 
thermal expansion of bonds around individual cations. 
The scatter of points representing the thermal expansion 
of individual bonds shown in Fig. 5 indicates clearly 
that such expansion is not in general isotropic, but the 
anisotropies have been shown to arise from strains and 
constraints in the structure. Bonds that are stretched are 
weaker, have larger amplitudes of thermal motion and 
larger thermal expansion than those that are compressed 
(e.g. the bonds around Ni2 in Ni2SiO4). In constrained 
structures bonds are prevented from expanding along 
the constrained directions (e.g. M g l - - O 1  and Mg2--O2 
in pyroxene and Mg- -O  and Ca- -O in garnet). Where 
possible, the expansion perpendicular to the constrained 
direction is larger than predicted so that the average 
expansion is close to the theoretical value. Such an 
effect represents a redistribution of the valence among 
the different bonds as the temperature changes. 

The theory also makes predictions about the rate of 
increase in the amplitude of the thermal vibration of 

the bonds, dU/dT, which agrees well with the observed 
changes in the thermal vibrations of the atoms that 
form the bond. A comparison of the theoretical and 
observed values allows one to calculate the extent to 
which the motions of the terminal atoms are correlated 
(Fig. 6). Such correlations are significant for all but the 
weakest bonds, increasing with valence according to an 
exponential law with a constant of 0.5 v.u., until the 
bonds become essentially rigid at valences above 1.0 v.u. 
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